Haku

The association of menopausal hormone levels with progression-related biomarkers in multiple sclerosis

QR-koodi
Finna-arvio

The association of menopausal hormone levels with progression-related biomarkers in multiple sclerosis

Background: Multiple sclerosis (MS) progression coincides temporally with menopause. However, it remains unclear whether the changes in disease course are related to the changes in reproductive hormone concentrations. We assessed the association of menopausal hormonal levels with progression-related biomarkers of MS and evaluated the changes in serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels during menopausal hormone therapy (MHT) in a prospective baseline-controlled design. Methods: The baseline serum estradiol, follicle stimulating hormone, and luteinizing hormone levels were measured from menopausal women with MS (n = 16) and healthy controls (HC, n = 15). SNfL and sGFAP were measured by single-molecule array. The associations of hormone levels with sNfL and sGFAP, and with Expanded Disability Status Scale (EDSS) and lesion load and whole brain volumes (WBV) in MRI were analyzed with Spearman's rank correlation and age-adjusted linear regression model. Changes in sNfL and sGFAP during one-year treatment with estradiol hemihydrate combined with cyclic dydrogesterone were assessed with Wilcoxon Signed Ranks Test. Results: In MS group, baseline estradiol had a positive correlation with WBV in MRI and an inverse correlation with lesion load, sNfL and sGFAP, but no correlation with EDSS. The associations of low estradiol with high sGFAP and low WBV were independent of age. During MHT, there was no significant change in sNfL and sGFAP levels in MS group while in HC, sGFAP slightly decreased at three months but returned to baseline at 12 months. Conclusion: Our preliminary findings suggest that low estradiol in menopausal women with MS has an age-independent association with more pronounced brain atrophy and higher sGFAP and thus advanced astrogliosis which could partially explain the more rapid progression of MS after menopause. One year of MHT did not alter the sGFAP or sNfL levels in women with MS.

Tallennettuna: