Haku

Isothermal and non-isothermal reduction behaviors of iron ore compacts in pure hydrogen atmosphere and kinetic analysis

QR-koodi

Isothermal and non-isothermal reduction behaviors of iron ore compacts in pure hydrogen atmosphere and kinetic analysis

Abstract

This study examines the isothermal and non-isothermal reduction behaviors of iron ore compacts in a pure hydrogen atmosphere and compares the results obtained during the reduction process by CO. The different phases accompanying the reduction reactions were identified using X-ray diffraction (XRD) and its morphology was microscopically examined. In isothermal experiments, temperature plays a significant role in the reduction process. At any given temperature, the reduction rate during the initial stages is higher than that during the final stages. The reduction rate in H₂ atmosphere was faster than in CO gas. The comparison of activation energy values suggested that reduction with H₂ is more efficient than with CO. At the same temperature, the time required to achieve a certain degree of reduction was lower when using H₂ gas than CO atmosphere. In non-isothermal tests, the heating rate has a significant effect on the reduction rate and reduction extent. At the same heating rate, the degree of reduction was higher in H₂ atmosphere than in CO gas. Based on experimental data, the parameters of reaction kinetics were deduced by application of model-free and model-fitting methods. The reduction in H₂ atmosphere was controlled by nucleation model (Avrami-Erofeev model), while the CO reduction reaction was controlled by gas diffusion.

Tallennettuna: