Haku

Comparison of 2D simulations of detached divertor plasmas with divertor Thomson measurements in the DIII-D tokamak

QR-koodi
Finna-arvio

Comparison of 2D simulations of detached divertor plasmas with divertor Thomson measurements in the DIII-D tokamak

A modeling study is reported using new 2D data from DIII-D tokamak divertor plasmas and improved 2D transport model that includes large cross-field drifts for the numerically difficult low anomalous transport regime associated with the H-mode. The data set, which spans a range of plasma densities for both forward and reverse toroidal magnetic field (Bt ), is provided by divertor Thomson scattering (DTS). Measurements utilizing X-point sweeping give corresponding 2D profiles of electron temperature (Te ) and density (ne ) across both divertor legs for individual discharges. The simulations focus on the open magnetic field-line regions, though they also include a small region of closed field lines. The calculations show the same features of in/out divertor plasma asymmetries as measured in the experiment, with the normal Bt direction (ion ∇. B drift toward the X-point) having higher ne and lower Te in the inner divertor leg than outer. Corresponding emission data for total radiated power shows a strong inner-divertor/outer-divertor asymmetry that is reproduced by the simulations. These 2D UEDGE transport simulations are enabled for steep-gradient H-mode conditions by newly implemented algorithms to control isolated grid-scale irregularities.

Tallennettuna: